Double Affine Lie Algebras and Finite Groups
نویسندگان
چکیده
We begin to study the Lie theoretical analogs of symplectic reflection algebras for Γ a finite cyclic group, which we call “cyclic double affine Lie algebra”. We focus on type A : in the finite (resp. affine, double affine) case, we prove that these structures are finite (resp. affine, toroidal) type Lie algebras, but the gradings differ. The case which is essentially new is sln(C[u, v] o Γ). We describe its universal central extensions and start the study of its representation theory, in particular of its highest weight integrable modules and Weyl modules. We also consider the first Weyl algebra A1 instead of the polynomial ring C[u, v], and, more generally, a rank one rational Cherednik algebra. We study quasi-finite highest weight representations of these Lie algebras.
منابع مشابه
Realization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کاملar X iv : 0 90 1 . 32 05 v 2 [ m at h . R T ] 1 9 Ju n 20 09 DOUBLE AFFINE LIE ALGEBRAS AND FINITE GROUPS
We begin to study the Lie theoretical analogs of symplectic reflection algebras for Γ a finite cyclic group, which we call “cyclic double affine Lie algebra”. We focus on type A : in the finite (resp. affine, double affine) case, we prove that these structures are finite (resp. affine, toroidal) type Lie algebras, but the gradings differ. The case which is essentially new is sln(C[u, v]⋊Γ). We ...
متن کاملExtended affine Lie algebras and other generalizations of affine Lie algebras – a survey
Motivation. The theory of affine (Kac-Moody) Lie algebras has been a tremendous success story. Not only has one been able to generalize essentially all of the well-developed theory of finite-dimensional simple Lie algebras and their associated groups to the setting of affine Lie algebras, but these algebras have found many striking applications in other parts of mathematics. It is natural to as...
متن کامل2 9 M ay 2 00 2 REPRESENTATIONS OF DOUBLE AFFINE LIE ALGEBRAS
The representation theory of Kac–Moody algebras, and in particular that of affine Lie algebras, has been extensively studied over the past twenty years. The representations that have had the most applications are the integrable ones, so called because they lift to the corresponding group. The affine Lie algebra associated to a finite-dimensional complex simple Lie algebra g is the universal (on...
متن کامل2 1 A pr 1 99 8 LIE ALGEBRAS AND DEGENERATE AFFINE HECKE ALGEBRAS OF TYPE
We construct a family of exact functors from the BernsteinGelfand-Gelfand category O of sln-modules to the category of finite-dimensional representations of the degenerate affine Hecke algebra Hl of GLl. These functors transform Verma modules to standard modules or zero, and simple modules to simple modules or zero. Any simple Hl-module can be thus obtained. Introduction The classical Frobenius...
متن کامل